

Function:

$\mathrm{V}=$ Voltage
S1 = Initiate Switch
$\mathrm{R}=$ Reset
NO = Normally Open Output
NC = Normally Closed Output
-

The SLR Series has no isolation between the control switch input and the solid-state output. Select the SLR for applications where the control switch is the same voltage source as the load. Provides the noiseless, reliability and long life of a solid-state relay, without the cost of isolation circuitry. Zero voltage switching SLR2 can extend the life of an incandescent lamp up to 10 times its normal life. Random switching SLR1 is normally used for inductive loads. When fully insulated female terminals are used on the connection wires, the system meets the requirements for touch-proof connections.

For more information see:
Appendix B, page 165, Figure 4 for dimensional drawing. Appendix C, page 172, Figure 38 for connection diagram.

Operation

The solid-state output is located between terminals 1 and 2 and can be ordered as either normally open or normally closed, when voltage is applied and S1 is open. When S1 is closed, the solid-state output between terminals 1 and 2 closes (or opens). If S1 is opened, the solid-state output will open (or close).
Reset: Opening S1 resets the output to its original state. Reset is also accomplished by removing input voltage.

Features:

- SLR1 - Random switching for inductive loads
- SLR2 - Zero voltage switching for resistive \& incandescent loads
- Normally open or normally closed output
-1-20A with up to 200A inrush
- 0.25 in. (6.35 mm) termination with single hole mounting
- Noiseless switching, reliability, and long life

Approvals: ($\subset \mathbf{7 1}$ (1)

Auxiliary Products:

- Quick connect to screw adaptor: P/N: P1015-18
- Female quick connect: P/N: P1015-13 (AWG 10/12) P/N: P1015-64 (AWG 14/16) P/N: P1015-14 (AWG 18/22)

Available Models:

SLR1410B
SLR1420A
SLR1610A
If desired part number is not listed, please call us to see if it is technically possible to build.

Order Table:

X	X	\underline{X}	$\underline{\text { X }}$
Series	Voltage	Output Rating	Output Form
-SLR1 - Random Switching	-2-24VAC	-1-1A	-A - Normally Open
-SLR2 - Zero Voltage Switching	-4-120VAC	-6-6A	-B - Normally Closed
	-6-230VAC	-10-10A	
		-20-20A	

FIGURE 1

CT; ESD5; ESDR; FS100; FS200; FS300; KRD3; KRD9; KRDB; KRDI; KRDM; KRDR; KRDS; KRPD; KRPS; KSD1; KSD2; KSD3; KSD4; KSDB; KSDR; KSDS;
KSDU; KSPD; KSPS; KSPU; KVM; T2D; TA; TAC1; TAC4; TDU; TDUB; TDUI; TDUS; TL; TMV8000; TS1; TS2; TS4; TS6; TSB; TSD1; TSD2; TSD3; TSD4; TSD6; TSD7; TSDB; TSDR; TSDS; TSS; TSU2000

FIGURE 4

0.25 (6.35) DIA.
. $\quad 0.25$ (6.35)
FA; FS; FSU1000*; NHPD; NHPS; NHPU;
NLF1*; NLF2*; PHS*; PTHF*; SIR1; SIR2;
SLR1*; SLR2*; TH1; TH2; THC; THD1;
THD2; THD3; THD4; THD7; THDB; THDM; THDS; THS
*If unit is rated @ 1A, see Figure 1
FIGURE 7

≤ 14 AWG $\left(2.45 \mathrm{~mm}^{2}\right)$
ASQU; ASTU; DSQU; DSTU
FIGURE 10

FIGURE 5

TRDU

FIGURE 2

HLV; HRD3; HRD9; HRDB; HRDI; HRDM; HRDR; HRDS; HRID; HRIS; HRIU; HRPD; HRPS; HRPU; HRV; RS

FIGURE 3

HSPZ

FIGURE 6

TRU

FIGURE 8

PLM; PLR; TDB; TDBH; TDBL; TDI; TDIH;
TDIL; TDM; TDMB; TDMH; TDML; TDR; TDS; TDSH; TDSL

FIGURE 11

ORB; ORM; ORS

FIGURE 9

FS500; PRLB; PRLM; PRLS; TRB; TRM; TRS

FIGURE 12

FS100; FS400

Appendix C - Connection Diagrams

FIGURE 34 - FB9L

B = LED Beacon
SS = Selector Switch
SI = Sensor Input
$\mathrm{L}=$ Indicator
F = Flasher Failure LED
AXL = Auxiliary Load/Alarm
FF = Flasher Failure/Bypass Relay BRC $=$ Bypass Relay Contacts

FIGURE 35 - SCR9L

FIGURE 37 - SIR1/SIR2 Series

* Customer Supplied Jumper ---. Internal Connection

FIGURE 38- SLR Series

S1 = Initiate Switch
Note: Normally open output is shown. Normally closed output is also available.

FIGURE 39 - NLF1/NLF2 Series

L= Load
S1 = Control Switch
Internal connections between terminals $2 \& 4$.

FIGURE 40 - PHS Series

Triac Output Device
$\mathrm{V}=$ Voltage
L = Load
$\mathrm{R}_{\mathrm{T}}=$ External Adjustment

